ECONOMIC RATIONALITY AS AN ARGUMENTATION PRINCIPLE

Timotheus Kampik

Supervisors: Helena Lindgren & Juan Carlos Nieves

Work in collaboration with Dov Gabbay & Juan Carlos Nieves

MOTIVATION I

- (Abstract) argumentation is a method of nonmonotonic reasoning
- Hence, it can be considered a decision-support and decision automation approach

MOTIVATION II

- An influential formal principle of decision-making is economic rationality ("Rational Economic Man")
- Bounded rationality: systematically relaxing economic rationality (Simon, and famously Tversky & Kahneman)

→ Let's use abstract argumentation as a model of bounded rationality!

ECONOMIC RATIONALITY

- Assumptions of economic rationality, ceteris paribus (if everything else equal):
 - "Rational Economic Man" acts according to clear preferences
 - Has consistent preferences over time

CLEAR PREFERENCES

- Standard economic model for individual decision-making
- Chooses from $A = \{a, \ldots, n\}$
- Choice function: $A \rightarrow 2^{A}$
- Clear preferences: total order of all sets in 2^A

Rubinstein, Ariel. Modeling bounded rationality.

CONSISTENT PREFERENCES (REFERENCE INDEPENDENCE)

- Set of choice options A, A', such that $A \subseteq A'$
- Rational man's choices $A^* \subseteq A$ and $A'^* \subseteq A'$
- If $A'^* \subseteq A$ then $A^* = A'^*$

Rubinstein, Ariel. Modeling bounded rationality.

EXAMPLE I

- We go to a café, on the menu: tea and coffee
 - We choose coffee
- Next day, one the menu: tea, coffee, and cookie
 - We choose `tea and cookie`. Are we rational?
 - We choose `tea`. Are we rational?

SHORTCOMINGS

- Ceteris paribus assumption
- Ariel Rubinstein: "The model has to be thought of as a reduced form derived from a more complete model, one that captures the decision maker's inference process."

- We want to determine the relevant citizenship (passports) of a client
- Example: case handling of immigration or tax administration
- We use decision management software (a real-world system)
- The decision models can be deployed to highscalability engines such as jDMN

EXAMPLE II (CONTINUED)

- First, insert № (Norwegian citizenship)
 → № considered relevant
- Then, insert uk (UK citizenship) as additional option
 → neither NO nor uk relevant: not rational!
- Automated checks of decision management software don't detect this problem

Reference Dependence: Determine relevant citizenships

Determine relevance of citizenship

ECONOMIC RATIONALITY & ABSTRACT ARGUMENTATION

- AF = (AR, AT); arguments AR, e.g.: $\{a, b, c\}$, attacks AT, e.g.: $\{(a, b), (b, c)\}$
- Semantics $\sigma(AF)$ returns set of extensions $ES \subseteq 2^{AR}$
- Conclusion $E \in ES, E \subseteq AR$ implies preferences: $\forall S \in AR, E \geq S$
- Consistent preferences when **normally expanding** AF (Economics' ceteris paribus assumption)

NORMAL EXPANSION

- Given AF = (AR, AT), AF' = (AR', AT') AF' normally expands AF iff:
 - $AR \subseteq AR', AT \subseteq AT'$
 - $(AT' \setminus AT) \cap (AR \times AR) = \{\}$
- Only add arguments and attacks, don't change attacks between existing arguments
- Denoted by $AF \leq_N AF'$ (Baumann, Brewka)

REFERENCE INDEPENDENCE PRINCIPLES

- Given semantics $\sigma, AF = (AR, AT), AF' = (AR', AT')$
- **Strong**, iff σ must be universally defined and $\forall E \in \sigma(AF), \forall E' \in \sigma(AF')$ it holds true that:

• $E' \not\subseteq AR$ or E' = E

• Weak, iff $\forall E \in \sigma(AF), \exists E' \in \sigma(AF')$ such that:

• $E' \not\subseteq AR$ or E' = E

STRONG REFERENCE INDEPENDENCE IS UNREALISTIC TO OBTAIN

EXAMPLE III - WEAK REFERENCE INDEPENDENCE

- Decision: recommend launch of product p_a: yes or no?
- *Launch* denoted by argument *a*
- At first, we find no reason not to launch

 \rightarrow recommend *a*

Our boss asks us to collect more stakeholder opinions (arguments)

- If all newly added arguments are not valid conclusions, *a* should remain a valid conclusion.
- Because we make clear decisions we consider arguments either valid conclusions or not (no undecided arguments)
- Which semantics allow us to be economically rational in this scenario?

SEMANTICS FAMILIES

Family	Admissibility- Based	Weak Admissibility- Based	Naive-Based
Satisfied by any established semantics [*]	Νο	Νο	Yes
Satisfied by	-	-	Naive, CF2, presumably SCF2 and nsa(CF2)

* Could potentially be satisfied by a semantics that always returns the empty set and hence is in all families.

FURTHER RESULTS

- Preference-based and value-based argumentation do not ensure economic rationality
- Monotony implies reference independence, but reference independence is not the same as cautious monotony or rational monotony
- We present a dialogue reasoner that can enforce reference independence as well as cautious monotony
 * this afternoon at SAFA!

 st Some tweaks are necessary to "port" this principle to abstract argumentation

OPEN QUESTIONS

- Undecided arguments: from a decision-making perspective we do not want to be undecided about actions; hence, relaxing (weak) reference independence to support undecided arguments requires more than abstract argumentation
- Our principle can provide a new perspective on argumentation and game theory
- From a practical perspective, we can investigate implications on business decision management

QUESTIONS?

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.