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Argumentation in AI

A general way for representing disputes and debates, with arguments and
attack-relationships between arguments.
Abstract Argumentation Framework (AAF) [Dung 1995]: arguments are
abstract entities (no attention is paid to their internal structure) that may attack
and/or be attacked by other arguments

Example (a simple AAF)

Mary and Marc’s defense attorney is reasoning on the trial of a robbery
case involving her clients, where Ann is a potential witness.
a: “Mary says that she was at the park at the time of the robbery, and

thus denies being involved in the robbery”;
b: “Marc says he was at home when the robbery took place, and there-

fore denies being involved in the robbery”;
c: “Ann says that she certainly saw Mary near the bank just before the

robbery, and possibly saw Marc there too”.

a

c

b

Several ways of modeling uncertainty in AAFs: weights, preferences,
probabilities.
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Probabilistic Abstract Argumentation

Probabilistic Abstract Argumentation Framework:
Epistemic and Constellation approaches

Two different way of modelling uncertainty in abstract argumentation using a
probabilistic approach.

Epistemic [Hunter 2013, Hunter and Thimm 2014]: uncertainty about the
fact that an argument is justifiable by an agent, i. e., that both the
premises of the argument and the derivation of the claim of the argument
from its premises are valid.
Constellation [Dung and Thang 2010, Li et Al. 2011]: uncertainty about
the fact that an argument/attack is in the framework
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Probabilistic Abstract Argumentation

Probabilistic Abstract Argumentation Framework (prAAF)

[Dung and Thang 2010] proposed EX (shorthand for “extensive”):
uncertainty is taken into account by extensively specifying a probability
distribution function (pdf) over the possible scenarios.

Example
According to EX, suppose that the lawyer thinks that only the following 4 scenarios are
possible:
S1: “Ann does not testify”; α1 = 〈{a, b}, ∅〉
S2: “Ann testifies, and the jury will deem that argument c undermines Mary and Marc’s
arguments a, b, and vice versa”; α2 = 〈{a, b, c}, {δac , δca, δbc , δcb}〉
S3: “Ann testifies, and the jury will deem that her argument c undermines Mary and
Marc’s arguments a, b, while, owing to the bad reputations of Mary and Marc, a and b
will be not perceived as strong enough to undermine argument c”;

α3 = 〈{a, b, c}, {δca, δcb}〉
S4: “Ann testifies, and the jury will deem that her argument c undermines Mary’s
argument a but not Marc’s argument b, as Ann is uncertain about Marc’s presence.
Vice versa, a and b will be not perceived as strong enough to undermine c”.

α4 = 〈{a, b, c}, {δca}〉



Introduction Complexity PBAF Incomplete AAF Conclusion

Probabilistic Abstract Argumentation

Probabilistic Abstract Argumentation Framework (prAAF)
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Probabilistic Abstract Argumentation

Probabilistic Abstract Argumentation Framework (prAAF)

[Li et Al. 2011] proposed IND (shorthand for “independence”): each
argument/defeat can be associated with a probability (and arguments
and defeats are viewed as independent events);

Example
The lawyer assigns:

P(c) = 0.9 (meaning that there is 10% probability that Mary will not testify),
P(a) = P(b) = 1 (meaning that Mary and Marc will certainly testify),
P(δca) = 1 (meaning that she/he is certain that the jury will consider Ann’s
argument as a solid rebuttal of Mary’s argument),
P(δcb) = 0.8 and P(δac) = P(δbc) = 0.4.

Possible scenarios:
α1, . . . α4 of the previous example,
α5 = 〈{a, b, c}, {δac , δca}〉,
α6 = 〈{a, b, c}, {δca, δbc}〉

α7 = 〈{a, b, c}, {δca, δcb, δac}〉,
α8 = 〈{a, b, c}, {δca, δcb, δbc}〉,
α9 = 〈{a, b, c}, {δca, δac , δbc}〉.

P(α5) = P(a)× P(b)× P(c)× P(δac)× P(δca)× (1− P(δbc)) = 0.17
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Probabilistic Abstract Argumentation

Semantics in Abstract Argumentation

Semantics for AAFs, i.e., identifying “reasonable” sets of arguments, called
extensions: admissible, stable, preferred, complete, grounded, semi-stable,
ideal-set, ideal .
– a set S of arguments is an admissible extension if it is “conflict-free” (i.e.,

there is no defeat between arguments in S), and every argument attacking
arguments in S is counterattacked by an argument in S

Classical problems in Abstract Argumentation

EXTsem(S): verifying whether S is an extension according to a semantics
sem,
CAsem: deciding whether argument a is acceptable (i.e., it belongs to
some extension according to sem)
P-EXTsem(S): what is the probability that S is an extension according to a
semantics sem?
P-ACCsem(a): what is the probability that argument a is acceptable (i.e., it
belongs to some extension according to sem)?
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Probabilistic Abstract Argumentation

P-EXTsem(S)

The probability Pr sem(S) that a set S of arguments is reasonable
according to a given semantics sem is defined as the sum of the
probabilities of the possible worlds w for which S is reasonable according
to sem

Example (probability that {a,b} is an admissible set)

In our example first example, the possible worlds for which {a, c} is admissible are:
S1: “Ann does not testify”; α1 = 〈{a, b}, ∅〉
S2: “Ann testifies, and the jury will deem that argument c undermines Mary and Marc’s
arguments a, b, and vice versa”; α2 = 〈{a, b, c}, {δac , δca, δbc , δcb}〉

Hence Pr sem({a, b}) = 0.4
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Probabilistic Abstract Argumentation

P-ACCsem(a)

The probability Pr sem
acc (a) that an argument a is (credulously) acceptable

according to a given semantics sem is defined as the sum of the
probabilities of the possible worlds w for which a is acceptable according
to sem

Example (probability that b is acceptable according to the admissible
semantics)
In our example first example, the possible worlds for which b is acceptable according
to the admissible semantics are:
S1: “Ann does not testify”; α1 = 〈{a, b}, ∅〉
S2: “Ann testifies, and the jury will deem that argument c undermines Mary and Marc’s
arguments a, b, and vice versa”; α2 = 〈{a, b, c}, {δac , δca, δbc , δcb}〉
S4: “Ann testifies, and the jury will deem that her argument c undermines Mary’s
argument a but not Marc’s argument b, as Ann is uncertain about Marc’s presence.
Vice versa, a and b will be not perceived as strong enough to undermine c”.

α4 = 〈{a, b, c}, {δca}〉

Hence Pr sem
acc (b) = 0.7
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IND, EX and GEN

IND vs EX

How to choose between EX and IND!
EX: expressive but not compact.

It requires to provide an estimation of the probability of every possible
scenario. How to do this? How much time it will take?

IND: compact but with limited expressiveness
It only requires to provide an estimation of the arguments/defeats’
probabilities (marginal probabilities are easier to be estimated). It assumes
that there is no correlation between arguments (e.g. it is not possible to
specify that two arguments occur together)
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IND, EX and GEN

GEN

generalizes EX, since it also enables an “extensive” definition of the pdf
over the possible AAFs;
generalizes IND, since it also allows us to impose independence between
arguments/defeats;
in order to encode a pdf over the possible AAFs, it exploits the
representation model of world-set descriptors and world-set sets, that is a
succinct and complete model for representing possible worlds and
probabilities over them [Antova et al 2008, Koch and Olteanu 2008]
allows the specification of correlations: for instance, co-existence and
XOR

Restrictions:

In order to study if and how the complexity varies when imposing a
restriction, two restricted forms of GEN, named IND-A (independence
over arguments) and IND-D (independence over defeats) were intro-
duced
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IND, EX and GEN

World set descriptors (wsds) and world-set sets
(ws-sets)

Possible worlds

Let V be a finite set of variables, where, ∀x ∈ V , the domain of x is finite and
is denoted as Domx .
A valuation over V is a set of assignments (each of which is denoted as x 7→ i ,
with x ∈ V and i ∈ Domx ) containing at most one assignment for each
variable in V .
A possible world over V is a total valuation over V .

Example

For instance, over the set of binary variables V = {x , y}, the following four
possible worlds are defined:

w1 = {x 7→ 0, y 7→ 0};
w2 = {x 7→ 0, y 7→ 1};
w3 = {x 7→ 1, y 7→ 0};
w4 = {x 7→ 1, y 7→ 1}.
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IND, EX and GEN

wsds and ws-sets

As shown in [Koch and Olteanu 2008], assuming that the variables in V are
independent random variables allows us to implicitly encode any pdf over the
set of possible worlds over V .

The pdfs of the variables in V are encoded in a world table W containing, for
each x ∈ V and i ∈ Domx , a triple (x , i ,p), where p is the probability
P({x 7→ i}) that the value of x is i .

The probability of a possible world w is the product of the probabilities of the
assignments defining w . For instance, the probability of the possible world
w1 = {x 7→ 0, y 7→ 0} is P({x → 0}) · P({y → 0}).
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IND, EX and GEN

wsds and ws-sets

A wsd d over V is a valuation over V , and it describes the set ω(d) of the possible
worlds encoded by the total valuations extending d .

Example

For instance, in the above-discussed case where V = {x , y} and x , y are binary
variables, the wsd d = {y 7→ 0} describes the set of possible worlds {w1,w3}, as
w1 = {x 7→ 0, y 7→ 0} and w3 = {x 7→ 1, y 7→ 0} are the only two total valuations over
V extending d .

Owing to the independence of the variables in V , the cumulative probability of the
possible worlds in ω(d) is P(d) =

∏
{x 7→i}⊆d P({x 7→ i}).

A ws-set S is a set of ws-descriptors and represents the set of possible worlds
resulting from the union of the sets of possible worlds represented by the
ws-descriptors in S, i.e. ω(S) = ∪d∈Sω(d).

The probability P(S) of a ws-set S is the sum of the probabilities of the possible
worlds in ω(S).
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IND, EX and GEN

prAAFs of the form GEN

Definition::

A prAAF of the form GEN is a tuple F = 〈A,D, W , λ〉, where A is a set of
arguments, D a set of defeats, W a world table, and λ : A∪D →WS(W )
is a function assigning every argument and defeat with a ws-set over W .

A possible world w ∈ ω(W ) supports the possible AAF α = 〈A′,D′〉 (denoted
as w |= α) if every argument/defeat σ ∈ A′ ∪ D′ is such that w ∈ ω(λ(σ)), and
there are no argument a ∈ A \ A′ such that w ∈ ω(λ(a)) and no defeat
δ ∈ (A′ × A′) \ D′ such that w ∈ ω(λ(δ)).
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IND, EX and GEN

prAAFs of the form GEN: Example

a
3

a
1

80%

a
2

a
5

100%

a
6

100%

AND

60%

60%

XOR

70%

30%

a
4

50%

50%50%
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IND, EX and GEN

Restricted forms of GEN

Definition:: Boolean prAAF (BOOL).

prAAF F = 〈A,D,W , λ〉 of the form GEN is said to be boolean (of the
form BOOL) if, for each x ∈ Var(W ), Domx is the boolean domain.

Intuitively, boolean prAAFs allow the occurrences of arguments and
defeats within a dispute to be defined in terms of boolean formulas over a
set of “elementary” independent probabilistic events
Any “boolean” ws-set {wsd1, . . . ,wsdn} encodes the DNF formula
c(wsd1) ∨ · · · ∨ c(wsdn), where, in turn, for each wsdi = {x1 7→
true, . . . , xk 7→ true, xk+1 7→ false, . . . , xm 7→ false}, the term c(wsdi ) is the
conjunction x1 ∧ · · · ∧ xk ∧ ¬xk+1 ∧ · · · ∧ ¬xm.
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IND, EX and GEN

Restricted forms of GEN

Definition:: Monadic prAAF (MON).

prAAF F = 〈A,D,W , λ〉 is said to be monadic (of the form MON) iff it is
boolean and, for each σ ∈ A∪D, λ(σ) = {{x 7→ v}}, where x ∈ Var(W )
and v ∈ Domx .

Intuitively, monadic prAAFs allow us to express co-existence of
arguments/defeats and mutual exclusiveness between pairs of
arguments and defeats in terms of XOR constraints.
An XOR constraint between two arguments/defeats σ1 and σ2 states that
any possible AAF contains either σ1 or σ2, but not both.
The co-existence of a set of arguments/defeats {σ1, . . . , σk} is imposed
by assigning the same ws-set to each of them, i.e., λ(σ1) = · · · = λ(σk ),
where λ(σ1) is of the form { {x} } or { {¬x} }.
An XOR constraint over a pair σ1, σ2 of arguments/defeats is imposed by
using the negation of the literal describing σ1 as descriptor for σ2.
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IND, EX and GEN

Restricted forms of GEN

Definition:: Monadic prAAF with independent defeats (IND-D).

monadic prAAF F = 〈A,D,W , λ〉 is said to be monadic with inde-
pendent defeats (of the form IND-D) iff, for each δ ∈ D, given that
λ(δ) = {{x 7→ v}}, there is no argument/defeat σ ∈ A ∪ D such that
λ(σ) = {{x 7→ v ′}}, with v , v ′ ∈ {true, false}.

A prAAFs of the form IND-D still allow us to impose the co-existence of
arguments and XOR constraints over pairs of arguments. On the other
hand, in this form of prAAF, defeats are modeled as conditionally
independent from one another, given the occurrence of the arguments
over which they are defined.
This case has been considered in some well-known frameworks in the
literature, such as the framework addressed in [Dondio 2014], where
defeats (but not the arguments) are assumed to be certain (obviously,
“certainty” is a particular case of independence).
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IND, EX and GEN

Restricted forms of GEN

Definition:: Monadic prAAF with independent arguments (IND-A).

monadic prAAF F = 〈A,D,W , λ〉 is said to be monadic with indepen-
dent arguments (or, equivalently, of the form IND-A) iff, for each a ∈ A,
given that λ(a) = {{x 7→ v}}, there is no argument/defeat σ ∈ A ∪ D
such that λ(σ) = {{x 7→ v ′}}, with v , v ′ ∈ {true, false}.

prAAFs of type IND-A allow us to impose the co-existence of defeats and
XOR constraints over pairs of defeats, while modeling the occurrences of
different arguments within the dispute as independent events.
The case where arguments are independent while defeats can be
correlated is at the basis of the study in [Hunter 2014], where a
framework for probabilistically modeling attacks (while arguments are
certain) has been introduced.
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Computing P-EXTsem(S) and P-ACCsem(a)

How to compute P-EXTsem(S) and P-ACCsem(a)?

The number of possible worlds may be huge: is it more reasonable to
estimate them?
This was proposed in [Li et Al. 2011]!
However, maybe in same cases we can provide the exact answers in
reasonable time, when?

We need to characterize the complexity of P-EXTsem(S) and P-ACCsem(a)
P-EXTsem(S) and P-ACCsem(a) are both function problems
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A glance at complexity classes: #P, FP#P and FP ||NP

#P is the complexity class of the functions f such that f counts the
number of accepting paths of a nondeterministic polynomial-time Turing
machine
Although P-EXTsem(S) and P-ACCsem(a) are closely related to #P,
strictly speaking, it cannot belong to it, since the outputs of our problem
are not integers
FP#P is the class of functions that are computable by a polynomial-time
Turing machine with a #P oracle

a function is FP#P -hard iff it is #P-hard, and thus to prove that a problem is
FP#P -hard it suffices to reduce a #P-hard problem to it
For each complexity class #C ∈ #PH, it holds that FP#P = FP#C (since
#PH ⊆ FP#P[1] under polynomial time 1-Turing
reductions [Toda and Watanabe 1992])

FP||NP (resp., FP||Σ
2
p ) is the class of functions computable by a

polynomial-time Turing machine with access to an NP (Σ2
p) oracle, whose

calls are non-adaptive
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Comlexity results for P-EXTsem(S)

Complexity of EXTsem(S) and P-EXTsem(S) for different forms of prAAFs

sem EXTsem(S)
P-EXTsem(S)

IND EX
GEN, BOOL,

IND-D
MON, IND-A

admissible P FP FP FP#P-c FP
stable P FP FP FP#P-c FP
complete P FP#P-c FP FP#P-c FP#P-c
grounded P FP#P-c FP FP#P-c FP#P-c
semi-stable coNP-c FP#P-c FP||NP-c FP#P-c FP#P-c
preferred coNP-c FP#P-c FP||NP-c FP#P-c FP#P-c
ideal-set coNP-c FP#P-c FP||NP-c FP#P-c FP#P-c
ideal in Θp

2, coNP-h FP#P-c FP||NP-c FP#P-c FP#P-c
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Comlexity results for P-ACCsem(a)

Complexity of CAsem and P-ACCsem(a) for different forms of prAAFs

sem CAsem
P-ACCsem(a)

IND EX
GEN, BOOL, IND-D

MON, IND-A

admissible NP-c

FP#P -c

FP||NP -c

FP#P -c

stable NP-c FP||NP -c
complete NP-c FP||NP -c
grounded P FP
semi-stable Σ2

p-c in FP||Σ
2
p , FP||NP -h

preferred NP-c FP||NP -c
ideal-set in Θp

2, coNP-h FP||NP -c
ideal in Θp

2, coNP-h FP||NP -c
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type IND

What is the complexity of P-EXTsem(S) for prAAF of
type IND?

Computing Pr sem(S) by directly applying the definition would require
exponential time (it relies on summing the probabilities of an exponential
number of possible worlds)

P-EXTsem(S) can be solved in time O(|S| · |A|) for the admissible and
stable semantics

P-EXTsem(S) is FP#P-complete for the complete, grounded,
preferred,ideal set, and ideal semantics
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type IND

Main idea for designing a PTIME algorithm

Express the fact that a set S of arguments is admissible [resp., stable] as
a probabilistic event Ead (S) [resp., Est (S)]

Pradmissible(S) = Pr(Ead (S)) [resp., Pr stable(S) = Pr(Est (S))]

the tractability of PROBadmissible(S) [resp. PROBstable(S)] follows from the
fact that Pradmissible(S) [resp., Pr stable(S))] results in a polynomial-size
expression involving only the probabilities of the arguments and the
defeats

this does not hold for the other semantics (complete, grounded,
preferred, and ideal)



Introduction Complexity PBAF Incomplete AAF Conclusion

Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type IND

Admissible semantics - probabilistic event

Ead (S) = e1(S) ∧ e2(S) ∧ e3(S)

e1(S) is the event that all of the arguments in S occur
e2(S) is the event that, given that e1(S) holds, S is conflict-free
e3(S) is the event that, given that e1(S) holds, for all the arguments d
outside S, one of the following events holds:

e31(S, d): d does not occur
e32(S, d): d occurs and no defeat (d , b), with b∈S, occurs
e33(S, d): d occurs, there is at least one argument b ∈ S such that (d , b)
occurs, and there is at least one argument a ∈ S such that (a, d) occurs

Lemma

Pradmissible(S) = Pr(Ead (S)) = Pr(e1(S)) · Pr(e2(S)) · Pr(e3(S))

The probabilities of e1, e2, and e3 are as follows (next slides)
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Probability that a set is admissible (1/2)

Ead (S) = e1(S) ∧ e2(S) ∧ e3(S)

e1(S) is the event that all of the arguments in S occur
Pr(e1(S)) =

∏
a∈S

PA(a)

e2(S) is the event that, given that e1(S) holds, S is conflict-free
Pr(e2(S)) =

∏
〈a, b〉 ∈ D

∧ a ∈ S ∧ b ∈ S

(
1− PD(〈a,b〉)

)

Example (probability that {a, c} is admissible (to be continued) )
Pradmissible({a, c}) = PA(a) · PA(c)︸ ︷︷ ︸

Pr(e1({a,c}))

· 1︸︷︷︸
Pr(e2({a,c}))

·Pr(e3(S))
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90% 70% 20%

90%
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type IND

Probability that a set is admissible (2/2)

e3(S) is the event that, given that e1(S) holds, for all the arguments d
outside S, one of the following events holds:

e31(S, d): d does not occur
e32(S, d): d occurs and no defeat (d , b), with b∈S, occurs
e33(S, d): d occurs, there is at least one argument b ∈ S such that (d , b)
occurs, and there is at least one argument a ∈ S such that (a, d) occurs

Pr(e3(S)) =
∏

d∈A\S

(
Pr(e31(S,d))+ Pr(e32(S,d))+Pr(e33(S,d))

)
where:

Pr(e31(S,d)) = 1−PA(d)

Pr(e32(S,d)) = PA(d) ·
∏

〈d, b〉∈D
∧b ∈ S

(
1−PD(〈d ,b〉)

)
Pr(e33(S,d)) = PA(d) ·

(
1−

∏
〈d, b〉 ∈ D
∧b ∈ S

(
1−PD(〈d ,b〉)

))
·

·
(

1−
∏

〈a, d〉 ∈ D
∧a ∈ S

(
1−PD(〈a,d〉)

))
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Tractability of admissible semantics

Example (probability that {a, c} is admissible (continued))

a b c
90% 70% 20%

90%

Pradmissible({a, c}) = PA(a) · PA(c)︸ ︷︷ ︸
Pr(e1({a,c}))

· 1︸︷︷︸
Pr(e2({a,c}))

·
{

(1− PA(b)︸ ︷︷ ︸
Pr(e31({a,c},b))

+

+ PA(b) · (1− PD(〈b,a〉)) · (1− PD(〈b, c〉))︸ ︷︷ ︸
Pr(e32({a,c},b))

+

+ PA(b) · [1− (1− PD(〈b,a〉))(1− PD(〈b, c〉))] · [1− (1− PD(〈c,b〉))]︸ ︷︷ ︸
Pr(e33({a,c},b))

}

Theorem

PROBadmissible(S) can be solved in time O(|S| · |A|).
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Stable semantics

probabilistic event that S is stable: Est (S) = e1(S) ∧ e2(S) ∧ e′3(S)

e′3(S) is the event that, given that e1(S) holds, for all the arguments d
outside S, one of the following events holds:

e31(S, d): d does not occur,
e′32(S, d): d occurs and it is defeated by S

Lemma

Pr stable(S) = Pr(e1(S)) · Pr(e2(S))·

·
∏

d∈A\S

{
1− PA(d)︸ ︷︷ ︸
Pr(e31(S,d))

+ PA(d) ·
[
1−

∏
〈a, d〉∈D ∧ a ∈ S

(1− PD(〈a,d〉))
]

︸ ︷︷ ︸
Pr(e′

32(S,d))

}

Theorem

PROBstable(S) can be solved in time O(|S| · |A|).
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type IND

FP#P-complete cases

Theorem

P-EXTsem(S)is FP#P-complete for sem in {complete, grounded, semi-stable,
preferred ideal-set, ideal }

For all the semantics but the ideal-set one:
reduction from the #P-hard problem #PP2DNF (Partitioned Positive 2DNF )
#PP2DNF is the problem of counting the number of satisfying assignments
of a DNF formula φ = C1 ∨ C2 ∨ · · · ∨ Ck whose propositional variables are
positive and can be partitioned into two sets X = {x1, . . . , xn} and
Y = {y1, . . . , ym}, and each clause Ci has the form xj ∧ y`, with xj ∈ X and
y` ∈ Y

For ideal-set semantics:
reduction from #P2CNF (the problem of counting the number of satisfying
assignments of a positive 2CNF formula)
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FP#P hardness for P-EXTcomplete(S) (1/2)
Given φ, consider the PrAF Fφ = 〈A,PA,D,PD〉 such that

A contains an argument for each propositional variable in φ, an argument c` for
each clause C` of φ, and an argument s;

D contains the defeats (xi , c`) and (yj , c`) for each clause C` = xi ∧ yj of φ, and
the defeats (s, xi ) and (xi , xi ) (resp., (s, yj ) and (yj , yj )) for each variable xi (resp.,
yj ) of φ;

PA assigns probability 1 to all the arguments in A; PD assigns probability 1 to all
the defeats in D except the defeats (s, xi ) and (s, yj ), which are assigned .5

Example

φ′ = (x1 ∧ y1) ∨ (x2 ∧ y1)∨
(x3 ∧ y2) ∨ (x3 ∧ y3)

x1

y1

c1

c3

s
x2

c2

c4

y2

x3

y3

.5

.5

.5

.5

.5

.5
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FP#P hardness for PROBcomplete(S) (2/2)

there is a bijection b : T → pw(F) between the set T of truth
assignments of φ and the set pw(F) of possible worlds
given a truth assignment τ for the variables of φ, φ evaluates to true
under τ iff S = {s} is not a complete extension in the world w = b(τ)

Example

τ ′ = x1/1, x2/0, x3/0, y1/1, y2/0, y3/0 for φ′

corresponds to the world wτ ′

τ ′ makes φ′ true and {s} is not a complete
extension in wτ ′ , since s defeats both x1 and
y1 which makes c1 acceptable w.r.t {s}

x1

y1

c1

c3

s
x2

c2

c4

y2

x3

y3

it can be shown that the number of satisfying assignments of φ is equal to
2n+m · (1−Pr complete

F ({s}))
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FP#P membership for PROBcomplete(S) (1/2)

Pr complete
F (S) can be computed by a polynomial time algorithm A with access

to a #P oracle
Pr complete
F (S) can be expressed as a rational number whose denominator

d is the product of the denominators of the probabilities of arguments in A
and defeats in D
Algorithm A first computes d in polynomial time w.r.t. the size of F , then
calls a #P oracle to determine the numerator of Pr complete

F (S)

algorithm A returns both n and d .
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FP#P membership for PROBcomplete(S) (2/2)

The oracle counts the number of accepting paths of a nondeterministic
polynomial-time Turing machine M such that:

(i) M nondeterministically guesses a subset of arguments in A and defeats in D
so that each leaf of the resulting computation tree is a possible world
w ∈ pw(F)

(ii) At each leaf, let w be the guessed world, and I(w) its probability, the
computation tree is then split again d · I(w) times to reflect the probability of
the guessed world (for each w ∈ pw(F), I(w) is a rational number whose
denominator is d , and I(w) can be computed in polynomial time w.r.t. the
size of F)

(iii) Finally, M checks in polynomial time if S is a complete set of arguments in
the world w

the number of accepting paths of M is d · Pr complete
F (S), that is the

numerator n of Pr complete
F (S)

algorithm A returns both n and d .
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FP#P membership for P-EXTpreferred(S)

Prpreferred
F (S) can be computed by algorithm A:

A first computes (in polynomial time) the denominator d of Prpreferred
F (S)

Then, A invokes a #NP oracle that counts the number of accepting path
of a non-deterministic Turing machine M such that:

(i) M nondeterministically guesses a subset of arguments in A and defeats in D
so that each leaf of the resulting computation tree is a possible world
w ∈ pw(F)

(ii) At each leaf, let w be the guessed world, and I(w) its probability, the
computation tree is then split again d · I(w) times to reflect the probability of
the guessed world (for each w ∈ pw(F), I(w) is a rational number whose
denominator is d , and I(w) can be computed in polynomial time w.r.t. the
size of F)

(iii) Finally, M invokes an NP oracle that checks whether S is a preferred set of
arguments in the world w

Remember that FP#P = FP#NP [Toda and Watanabe 1992].
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P-ACCsem
IND

(a)

Theorem

For sem ∈{ad, st, co, gr, sst, pr, ids, ide}, it holds that P-ACCsem(a) is
FP#P-complete.

Membership: similar to P-EXTsem
IND (S).

Hardness: reduction from the #P-hard problem #P2CNF , that is the
problem of counting the number of satisfying assignments of a CNF
formula where each clause consists of exactly 2 positive literals, to
P-ACCsem(a).

c1 c2
 a

x1
x3

 x2

1

2

1

2

1

2

c1 c2a

x1
 x2

Graphical representation of the PrAAF F(φ), where φ = (X1 ∨ X3) ∧ (X2 ∨ X3) and the
possible world w(γ,F(φ)), where γ is the truth assignment for X1,X2 and X3 such that
γ(X1) =true, γ(X2) =true and γ(X3) =false.
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type EX

Tractable cases for P-EXTsem
EX

(S)

Theorem

P-EXTsem
EX (S) is in FP for sem ∈ {ad,st,gr,co}.

for every sem ∈ {ad,st,gr,co}, deciding whether S is an extension in a
deterministic AAF (i.e., solving EXTsem(S)) is in PTIME;
the number of possible AAFs over which this check must be performed is
linear in the input.
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type EX

Hard cases for P-EXTsem
EX

(S)

Theorem

P-EXTsem
EX (S) is FP||NP-complete for sem ∈ {pr, ids,ide,sst}.

Membership in FP||NP .
For the semantics sst, pr and ids (for which EXTsem(S) is
coNP-complete), the membership in FP||NP follows from the fact that
P-EXTsem

EX (S) can be solved by performing as many parallel invocations to
NP oracles (each solving an instance of EXTsem(S) over a possible AAF
with non-zero probability) as the number of possible AAFs encoded in the
prAAF.
For the semantics ide, the membership to FP||NP still holds, since a
polynomial time Turing machine with parallel invocations to Θp

2 oracles
can be easily converted into a polynomial time Turing machine with
parallel invocations to NP oracles (Θp

2 = P||NP).
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type EX

Hard cases for P-EXTsem
EX

(S)

Theorem

P-EXTsem
EX (S) is FP||NP-complete for sem ∈ {pr, ids,ide,sst}.

Hardness for FP||NP .
Reduction from the FP||NP-hard problem sup(φ), that is the problem of
computing the supremum of the satisfying assignments for a 3CNF
Boolean formula φ(x1, . . . , xn).
The supremum sup(φ) is the assignment where, for each i ∈ [1..n], the
variable xi is assigned with true iff there exists a satisfying assignment of
φ wherein xi = true.
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Hard cases for P-EXTsem
EX

(S)

Reduction for ide.
Let φ = C1 ∧ C2 ∧ · · · ∧ Ck be the 3-CNF boolean formula in the instance
of supremum, over the set X = {x1, . . . , xn} of variables.
Build n formulas φ1, . . . , φn from φ, where each φi has the form
φi = Ci,1 ∧ Ci,2 ∧ · · · ∧ Ci,ki and is obtained from φ by assigning xi = true.

Define the prAAF Fφ = 〈A,D, ~α, ~P〉 of the form EX defining a possible
AAF αi = 〈Ai ,Di〉 for each formula φi , whose probability is Pi = 2i−1/2n.

x3

C1,1 C1,2

x2 x3

s

ψ

δ1,1
x2

δ1,2
x2

δ1,1
x3

δ1,2
x3

1

1

δ2,1
ψ1

δ2,2
ψ1

δ3,1
ψ1

δ3,2
ψ1

δ1,1
2

δ1,2
2

δ1,1
3

δ1,2
3 δψ1

δ2
1

δ3
1

δ1,2
δ1,1

δ�1
�

AAF α1, where φ1 = (x2 ∨ x3) ∧ (¬x2 ∨ x3) is obtained

from the 3-CNF formula φ = (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨

¬x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) by assigning x1 = true

{s} is not an ideal-set extension (and,
thus, it is not an ideal extension) in the
AAF 〈Ai ,Di〉 iff there exists a truth as-
signment t for x1, . . . , xi−1, xi+1, . . . , xn
making φi evaluate to true.
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Complexity of P-ACCsem
EX

(a)

Theorem

P-ACCsem
EX (a) is in FP for sem = gr.

Theorem

P-ACCsem
EX (a) is in FP||NP for sem ∈ {ad,st,co,pr,ids,ide}, and in FP||Σ

2
p

for sem = sst.

Theorem

P-ACCsem
EX (a) is FP||NP-hard for sem ∈ {ad,st,co,pr,ids, ide,sst}
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Complexity of P-EXTsem(S) and P-ACCsem(a) for prAAF of type GEN

Upper Bound of Complexity for prAAF of type GEN

Theorem

For any sem ∈ SEM, P-EXTsem
GEN(S) and P-ACCsem

GEN(a) are in FP#P .

The proof is similar to the proof of membership in FP#P for prAAF of type IND.
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Hard Cases

Theorem

For any sem ∈ {ad,st,co,gr,pr, ids,ide,sst}, P-EXTsem
IND-A(S) is

FP#P-hard.

FP#P-hardness for sem ∈ {co,gr,pr, ids,ide,sst} is implied by the
fact that P-EXTsem

IND (S) is FP#P-complete and IND can be seen as a
further restriction of IND-A.
For sem ∈ {ad,st} there is a reduction to P-EXTsem(S)from the
#P-hard problem #P2CNF , that is, the problem of counting the number
of satisfying assignments of a CNF formula where each clause consists
of exactly 2 positive literals.
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reduction from #P2CNF to P-EXTsem(S)

Let φ = C1 ∧ C2 ∧ . . .Ck be a P2CNF , where X = {x1, . . . , xn} is the set of its
propositional variables. We define the prAAF Fφ = 〈A,D,W , λ〉 of the form IND-A
where:

The set A consists of: (i) three arguments Aj with j ∈ [1..3]; and (ii) an argument
Ci for each clause Ci appearing in φ;
The relation D contains, for each clause Ci (with i ∈ [1..k ]), a defeat
δ1

Ci
= (A1,Ci ), a defeat δ2

Ci
= (A2,Ci ), and a defeat δ3

Ci
= (Ci ,A3).

The world table W contains a triple 〈x , true, 1〉, and, for each i ∈ [1..n], the two
triples 〈xi , true, 1

2 〉 and 〈xi , false, 1
2 〉;

Function λ is defined as follows: i) for each a ∈ A, λ(a) = {x 7→ true}; and ii) for
each i ∈ [1..k ], λ(δ3

Ci
) = {x 7→ true}; and iii) for each i ∈ [1..k ],

λ(δ1
Ci

) = wsi1 = {xj 7→ true}, and λ(δ2
Ci

) = wsi2 = {xh 7→ true}, where
Ci = xj ∨ xh.

A1 A2

C1 Ck

wsk1

A3

ws12

ws11

wsk2
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P-EXTsem
IND-D

(S) solvable in PTIME for sem ∈ {ad,st}

Definition

Given a prAAF F = 〈A,D,W , λ〉 of the form IND-D and a set S ⊆ A of
arguments, the event that S is an admissible extension is
Ead(S) = e1(S) ∧ e2(S) ∧ e3(S) where:

e1(S) =
∧

a∈S
Lit(a)

e2(S) =
∧

δ = (a, b) ∈ D
∧a ∈ S ∧ b ∈ S

¬Lit(δ)

e3(S) =
∧

d∈A\S

(
e31(S, d) ∨ e32(S, d) ∨ e33(S, d)

)
where:

e31(S, d) = ¬Lit(d)
e32(S, d) = Lit(d) ∧

∧
δ= (d, b)∈D
∧b ∈ S

¬Lit(δ)

e33(S, d) = Lit(d) ∧
∨

δ = (d, b) ∈ D
∧b ∈ S

Lit(δ) ∧
∨

δ = (a, d) ∈ D
∧a ∈ S

Lit(δ)
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P-EXTsem
IND-D

(S) solvable in PTIME for sem ∈ {ad,st}
(i) there exist a,b ∈ S such that Lit(a) = ¬Lit(b) hence Ead(S) = false;
(ii) it is possible to rewrite Ead(S) into a boolean expression REW(Ead(S))

equivalent to Ead(S) having the following form:

x1 ∧ · · · ∧ xn ∧ ¬xn+1 ∧ · · · ∧ ¬xn+m∧
(E1 ∧ · · · ∧ Ek )∧

((xn+m+1 ∧ Ek+1) ∨ (¬xn+m+1 ∧ E ′k+1)) ∧ . . .
· · · ∧ ((xn+m+l ∧ Ek+l ) ∨ (¬xn+m+l ∧ E ′k+l ))

(1)

where:
for each i , j ∈ [1..n + m + l], with i 6= j , we have xi 6= xj ;
for each i ∈ [1..k + h + l], Ei (resp. E ′i ) is a conjunction of boolean
formulas, i.e., Ei = Ei1 ∧ · · · ∧Eih (resp., E ′i = E ′i1 ∧ · · · ∧E ′ih′ ), where every
Eij (resp. E ′ij ) is a boolean formula of the form E∗ij ∨ ¬E∗ij ∧ E#

ij . Herein,
each E∗ij and each E#

ij are boolean formulas of the form

E∗ij =
∧r

i′=1 yi′ ∧
∧r+r ′

i′=r+1 ¬yi′ and E#
ij =

∨s
j′=1 zj′ ∨

∨s+s′

j′=s+1 ¬zj′ , where
each variable yi′ (with i ′ ∈ [1..r + r ′]) and each variable zj′ (with
j ′ ∈ [1..s + s′]) are distinct fresh variables having no other occurrences in
the whole formula REW(Ead(S)).
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Bipolar Argumentation Frameworks (BAF)

Bipolar Abstract Argumentation Frameworks (BAFs) allow supports, besides attacks, to be
specified between arguments

A bipolar abstract argumentation framework (BAF) is a tuple F = 〈A,Ra,Rs〉, where A is
a set of arguments,Ra ⊆ A×A is a defeat/attack relation andRs ⊆ A×A is a support
relation

Two formal semantics of support considered in this talk
in [Cayrol and Lagasquie-Schiex 2005], the support is a generic “inverse” of the notion of attack (“abstract
semantics”)
in [Boella et Al. 2010], it is viewed as a “deductive” correlation between arguments (“deductive semantics”)

Definition (supported attacks and d-attacks)

There is a supported attack from an argument a to an argument b
iff there is a sequence of supports from a to an argument a′ and an
attack from a′ to b

There is a d-attack from from an argument a to an argument b iff

a attacks b
there is an argument a′ such that there is a path from a to a′

consisting of only support edges, and a′ d-attacks b, or
there is an argument a′ such that there is a path from b to a′

consisting of only support edges, and a d-attacks a′.



Introduction Complexity PBAF Incomplete AAF Conclusion

Bipolar Argumentation Frameworks (BAF)

Bipolar Abstract Argumentation Frameworks (BAFs) allow supports, besides attacks, to be
specified between arguments

A bipolar abstract argumentation framework (BAF) is a tuple F = 〈A,Ra,Rs〉, where A is
a set of arguments,Ra ⊆ A×A is a defeat/attack relation andRs ⊆ A×A is a support
relation

Two formal semantics of support considered in this talk
in [Cayrol and Lagasquie-Schiex 2005], the support is a generic “inverse” of the notion of attack (“abstract
semantics”)
in [Boella et Al. 2010], it is viewed as a “deductive” correlation between arguments (“deductive semantics”)

Definition (supported attacks and d-attacks)

There is a supported attack from an argument a to an argument b
iff there is a sequence of supports from a to an argument a′ and an
attack from a′ to b

There is a d-attack from from an argument a to an argument b iff

a attacks b
there is an argument a′ such that there is a path from a to a′

consisting of only support edges, and a′ d-attacks b, or
there is an argument a′ such that there is a path from b to a′

consisting of only support edges, and a d-attacks a′.



Introduction Complexity PBAF Incomplete AAF Conclusion

Bipolar Argumentation Frameworks (BAF)

Bipolar Abstract Argumentation Frameworks (BAFs) allow supports, besides attacks, to be
specified between arguments

A bipolar abstract argumentation framework (BAF) is a tuple F = 〈A,Ra,Rs〉, where A is
a set of arguments,Ra ⊆ A×A is a defeat/attack relation andRs ⊆ A×A is a support
relation

Two formal semantics of support considered in this talk
in [Cayrol and Lagasquie-Schiex 2005], the support is a generic “inverse” of the notion of attack (“abstract
semantics”)
in [Boella et Al. 2010], it is viewed as a “deductive” correlation between arguments (“deductive semantics”)

Definition (supported attacks and d-attacks)

There is a supported attack from an argument a to an argument b
iff there is a sequence of supports from a to an argument a′ and an
attack from a′ to b

There is a d-attack from from an argument a to an argument b iff

a attacks b
there is an argument a′ such that there is a path from a to a′

consisting of only support edges, and a′ d-attacks b, or
there is an argument a′ such that there is a path from b to a′

consisting of only support edges, and a d-attacks a′.



Introduction Complexity PBAF Incomplete AAF Conclusion

Bipolar Argumentation Frameworks (BAF)

Bipolar Abstract Argumentation Frameworks (BAFs) allow supports, besides attacks, to be
specified between arguments

A bipolar abstract argumentation framework (BAF) is a tuple F = 〈A,Ra,Rs〉, where A is
a set of arguments,Ra ⊆ A×A is a defeat/attack relation andRs ⊆ A×A is a support
relation

Two formal semantics of support considered in this talk
in [Cayrol and Lagasquie-Schiex 2005], the support is a generic “inverse” of the notion of attack (“abstract
semantics”)
in [Boella et Al. 2010], it is viewed as a “deductive” correlation between arguments (“deductive semantics”)

Definition (supported attacks and d-attacks)

There is a supported attack from an argument a to an argument b
iff there is a sequence of supports from a to an argument a′ and an
attack from a′ to b

There is a d-attack from from an argument a to an argument b iff

a attacks b
there is an argument a′ such that there is a path from a to a′

consisting of only support edges, and a′ d-attacks b, or
there is an argument a′ such that there is a path from b to a′

consisting of only support edges, and a d-attacks a′.



Introduction Complexity PBAF Incomplete AAF Conclusion

BAF semantics

The various extensions’ semantics defined for AAFs have been shown to have a natural
counterpart over BAFs, after noticing that combining attacks with supports (of any semantics)
generates “implicit” attacks.

Definition (Conflict-free and safe sets of arguments)

A set of arguments S ⊆ A is:
– conflict-free iff 6 ∃ a, b ∈ S such that {a} set-attacks b;
– safe iff 6 ∃ b ∈ A such that S set-attacks b and either S set-supports b or b ∈ S.

Definition (Stable extension)

A set of arguments S ⊆ A is a stable extension iff S is conflict-free and ∀a ∈ A \ S it holds that S set-attacks
a.

Definition (Admissible extension)

A set S ⊆ A is
– a d-admissible extension iff S is conflict-free and set-defends all of its arguments;
– an s-admissible extension iff S is safe and set-defends all of its arguments;
– a c-admissible extension iff S is conflict-free, closed forRs and set-defends all of its arguments.
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BAF semantics

In turn, the other semantics subsuming the admissible one are defined as
follows.

A set S ⊆ A is said to be:
– a d-complete (resp. s-complete, c-complete) extension iff S is d-admissible

(resp., s-admissible, c-admissible) and S contains all the arguments
set-defended by S;

– a d-grounded (resp. s-grounded, c-grounded) extension iff S is a minimal
(w.r.t. ⊆) d-complete (resp. s-complete, c-complete) extension;

– a d-preferred (resp. s-preferred, c-preferred) extension iff S is a maximal
(w.r.t. ⊆) d-complete (resp. s-complete, c-complete) extension;

– a d-ideal (resp. s-ideal, c-ideal) extension iff S is a maximal (w.r.t. ⊆)
d-admissible (resp. s-admissible, c-admissible) extension and S is
contained in every d-preferred (resp. s-preferred, c-preferred) extension.
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Probabilistic Bipolar Argumentation Framework

Probabilistic BAF

Arguments, attacks and supports can be uncertain (Constellation Approach)

Definition (Probabilistic BAF (PrBAF))
A probabilistic BAF (prBAF) F is a tuple F = 〈A,Ra,Rs,P〉, where F = 〈A,Ra,Rs〉 is a BAF
and P is a probability distribution function (pdf) over the set
PS = {α = 〈A′,R′

a,R
′
s〉 |A

′ ⊆ A ∧R′
a ⊆ (A′ ×A′) ∩Ra ∧R′

s ⊆ (A′ ×A′) ∩Rs}.

The elements in PS(F) (possible BAFs) are the alternative cases of dispute that may occur,
and each of them is encoded by a BAF

EX

A prBAF F of form EX is a tuple
〈A,Ra,Rs, ~α, ~P〉, where

~α = α1, . . . , αm is the sequence of
the possible BAFs that are assigned
non-zero probability
~P = P(α1), . . . ,P(αm) are their
probabilities

IND

A prBAF of type IND is a tuple 〈A,Ra,Rs,PA,PR〉
where

A = {a1, . . . , am}, Ra = {δ1, . . . , δn}
Rs = {σ1, . . . , σk}, and

PA = {P(a1), . . . ,P(am)},
PR = {P(δ1), . . . ,P(δn),P(σ1), . . . ,P(σk )}
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Probabilistic Bipolar Argumentation Framework

Example of PrBAFs

Example PrBAF of type EX Example PrBAF of type IND
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Probabilistic Bipolar Argumentation Framework

Probability of extensions

The probability Psem(S) that a set S of arguments is reasonable
according to a given semantics sem is defined as the sum of the
probabilities of the possible worlds w for which S is reasonable according
to sem

Example

The probability that {b} is a d-/s-/c-admissible set is
60% since it is a d-/s-/c-admissible set only in the
possible BAF on the bottom of the right hand side
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Probabilistic Bipolar Argumentation Framework

Complexity of Probabilistic Abstract Argumentation

P-EXTsem(S) is the problem of computing the probability Psem(S)

P-EXTsem(S) is the probabilistic counterpart of the problem EXTsem(S) of
verifying whether a set S is reasonable according to sem

Literature Our results

sem EXT
P-EXT EXT

P-EXT
(prAAF) (prBAF)

(AAF)
IND EX

(BAF)
IND EX

admissible P FP FP P
stable P FP FP P
complete P FP#P FP P
grounded P FP#P FP P
preferred coNP FP#P FP||NP coNP

ideal in θp
2 ,

FP#P FP||NP in θp
2 ,

coNP-h coNP-h
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Probabilistic Bipolar Argumentation Framework

The Main Result

Theorem

For any sem ∈ SEM, and for both s- and d- prBAFs, P-EXTsem
IND (S) is

FP#P-complete.

Upper bound proved by defining a polynomial time algorithm A with
access to a #P oracle that computes Psem(S)

Lower bound proved by showing a reduction from the #P-hard problem
#BP2DNF to P-EXTsem

IND (S) for s-PrBAF and from problem #P2CNF to
P-EXTsem

IND (S) for d-PrBAF
#BP2DNF is the problem of counting the satisfying assignments of a
bipartite positive 2-DNF formula.
#P2CNF is the problem of counting the number of satisfying assignments of
a CNF formula where each clause consists of exactly 2 positive literals
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For any sem ∈ SEM, and for both s- and d- prBAFs, P-EXTsem
IND (S) is

FP#P-complete.

Upper bound proved by defining a polynomial time algorithm A with
access to a #P oracle that computes Psem(S)

Lower bound proved by showing a reduction from the #P-hard problem
#BP2DNF to P-EXTsem

IND (S) for s-PrBAF and from problem #P2CNF to
P-EXTsem

IND (S) for d-PrBAF
#BP2DNF is the problem of counting the satisfying assignments of a
bipartite positive 2-DNF formula.
#P2CNF is the problem of counting the number of satisfying assignments of
a CNF formula where each clause consists of exactly 2 positive literals
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Probabilistic Bipolar Argumentation Framework

Proving the lower bound

Example (reduction for s-prBAF)

The s-prBAF representing the formula
φ1 = (X1∧Y1)∨(X2∧Y2)∨(X3∧Y1)∨(X3∧Y2)

Example (reduction for d-prBAF)

The d-prBAF representing the formula
φ2 = (X1 ∨ X3) ∧ (X1 ∨ X2) ∧ (X2 ∨ X3)

 a

x1

x3

 

x2

c1

c2

c3

 

 a

x1

x3

 

x2

y1

y2  b

 c  d

.5

.5

.5

.5

.5

.5

.5

.5

(a) (b)
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Incomplete AAFs

Definition ([Baumeister et al., 2018a])

An incomplete Abstract Argumentation Framework is a tuple 〈A,A?,D,D?〉,
where:

A and A? are disjoint sets of arguments,
D and D? are disjoint sets of defeats between arguments in A ∪ A?

The arguments in A are said to be certain (i.e., they are definitely known
to exist), while those in A? uncertain (i.e., it is not known for sure if they
occur in the argumentation or not).
The defeats in D are said to be certain (i.e., they are definitely known to
exist, if both the incident arguments exist), while those in D? uncertain
(i..e, it is not for sure whether they hold in the argumentation, even if both
the incident arguments exist).

(Remark)

What is their relationship with prAAFs?
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Completions and extension verification problem

Definition (Completion)

A completion for an iAAF IF = 〈A,A?,D, D?〉 is an AAF F = 〈A′,D′〉 where:
A⊆ A′ ⊆(A∪A?)

D∩(A′×A′)⊆D′⊆ (D∪D?) ∩ (A′×A′)

The notion of extension is re-formulated under both the possible and the
necessary perspectiv

true in at least one and every scenario, respectively.
An iAAF is similar to a prAAF of type ind, where certain arguments/defeats
have probaility 1 and uncertain arguments/defeats have probaility p, with
0 < p < 1.
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i-extension: definition and complexity of the
verification problem

Definition (Possible and necessary i-extension)

Given an iAAF IF and a semantics σ, a set S is said to be a possible (resp.,
necessary) i-extension for IF (under σ) if, for at least one (resp., for every)
completion F = 〈A′,D′〉 of IF , the set S∗ = S ∩ A′ is an extension of F under
σ.

i-extensions
σ pos nec

ad,st,co,gr NP-c P
pr Σp

2-c coNP-c
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From i-Extensions to i∗-Extensions

(Remark)

As a matter of fact, under the possible perspective, the definition of i-extension
proposed in [Baumeister et al., 2018a] raises some issues that can be hardly
reconciled with the expectation that an extension should consist of a set of
arguments that collectively represent a robust point of view in a dispute.

A set S may be an i-extension of an iAAF IF even if, for every completion
F where S’s arguments occur all together, S is not an extension for F .
As an undesirable consequence of the point above, a set S may be an
i-extension of IF even if some of its arguments are definitely conflicting,
due to certain attacks between them
Even in a possible perspective, one would expect that the fact that an
argument belongs to an i-extension (i.e., the argument is “i-acceptable”)
certifies that the argument is “robust to some extent”. Unfortunately, an
i-acceptable argument may not be robust at all.

a b
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i∗-extensions

Definition (Possible and necessary i∗-extension)

Given an iAAF IF and a semantics σ, a set S is said to be a possible (resp.,
necessary) i∗-extension for IF (under σ) if, for at least one (resp., for every)
completion F of IF , the set S is an extension of F under σ.

Proposition

Given an iAAF IF = 〈A,A?,D,D?〉 and a semantics σ ∈ {ad,st,co,gr, pr},
let N∗ and N be the sets of necessary i∗- and i- extensions under σ,
respectively, and P∗ and P the sets of possible i∗- and i- extensions under σ,
respectively.

N∗⊆N ⊆P∗⊆P.
Under both the possible and necessary perspectives, if S is an
i-extension and S ∩ A = S, then S is an i∗-extension.
The vice versa holds only for the necessary perspective.
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Complexity overview

i-extensions i∗-extensions
σ pos nec pos nec

ad,st,co,gr NP-c P P P
pr Σp

2-c coNP-c Σp
2-c coNP-c
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Conclusion an open problems

We revised the complexity of P-EXTsem(S) and P-ACCsem(a) for prAAFs
and prBAFs and introduced the framework GEN for compactly
representing prAAfs
Other issues not covered in this talk

[Liao et al., 2018] showed that P-EXTsem(S) is fixed-parameter tractable for
the complete (and preferred) semantics for PrAAFs of type IND.
[Mantadelis and Bistarelli, 2020] defined the probabilistic attack/argument
normal form for PrAAFs of type IND.
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Conclusion an open problems

Some open research problems
Identification of other tractable cases: are the results of [Liao et al., 2018]
extendable to prAAFs of type IND-D?
What is the complexity of P-EXTsem(S) (P-ACCsem(a)) under other
semantics? For instance the complexity of P-EXTsem(S) have been
characterized under stage semantics for prAAF of type ind, what about gen
(and its restrictions)?
Normal forms proposed in [Mantadelis and Bistarelli, 2020] can be extended
to prAAfs of type gen (or any of its restrictions)?
How to provide the pdf from data? [Hunter and Noor, 2020] presents an
interesting approach for aggregating users’ reviews in a pdf. It will be
interesting to develop efficient and effective algorithms that use the proposed
theoretical framework to derive a pdf compactly representing users’ reviews.
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